NEW RESULTS ON S-EXTREMAL ADDITIVE CODES OVER \mathbb{F}_4

Zlatko Varbanov

Department of Mathematics and Informatics Veliko Tarnovo University

Algebraic and Combinatorial Coding Theory

Pamporovo, June 2008

Additive code C over \mathbb{F}_q of length n – additive subgroup of \mathbb{F}_q^n .

Connections:

- \Rightarrow Quantum codes (Calderbank, Rains, Shor, and Sloane)
- \Rightarrow combinatorial *t*-designs (Pless and Kim)
- \Rightarrow undirected graphs (Glynn; Schlingemann and Werner)

 \Rightarrow other combinatorial structures (Huffman, Gulliver, Parker)

ADDITIVE CODES OVER \mathbb{F}_4

 $\mathbb{F}_4 = GF(4) = \{0, 1, \omega, \omega^2\}, \ 2 = \omega, \ 3 = \omega^2, \ \text{and} \ \omega^2 + \omega + 1 = 0.$

Additive code C over \mathbb{F}_4 of length n – additive subgroup of \mathbb{F}_4^n . We call C an $(n, 2^k)$ code $(0 \le k \le 2n)$.

Weight of a codeword $c \in C$ (wt(c)) is the number of nonzero components of c.

$$d = d(C) = \min\{wt(c) | c \in C, c \neq 0\} \rightarrow (n, 2^k, d) \text{ code.}$$

Generator matrix of $C - k \times n$ matrix with entries in \mathbb{F}_4 whose rows are a basis of C.

Weight enumerator of C: $C(z) = \sum_{i=0}^{n} A_i z^i$

ADDITIVE CODES OVER \mathbb{F}_4

Trace map $Tr : \mathbb{F}_4 \to \mathbb{F}_2$ is given by $Tr(x) = x + x^2$. In particular Tr(0) = Tr(1) = 0 and $Tr(\omega) = Tr(\omega^2) = 1$.

The conjugate of $x \in \mathbb{F}_4$ (denoted \bar{x}) is the following image of $x: \bar{0} = 0, \bar{1} = 1$, and $\bar{\omega} = \omega^2$.

The trace inner product of two vectors $x = (x_1, x_2, ..., x_n), y = (y_1, y_2, ..., y_n)$ in \mathbb{F}_4^n is

$$x \star y = \sum_{i=1}^{n} Tr(x_i \bar{y}_i) \tag{1}$$

ADDITIVE SELF-ORTHOGONAL CODES

Dual code $(C^{\perp}) - C^{\perp} = \{x \in \mathbb{F}_4^n | x \star c = 0 \text{ for all } c \in C\}.$

If C is an $(n, 2^k)$ code, then C^{\perp} is an $(n, 2^{2n-k})$ code.

Self-orthogonal additive code - $C \subseteq C^{\perp}$

Self-dual additive code - $C = C^{\perp}$; it is $(n, 2^n)$ code.

 $Type \ II \ {f code}$ - additive self-dual code, all codewords have even weight

 $Type \ I \ {\bf code}$ - additive self-dual code, some codewords have odd weight

BOUNDS

Bounds on the minimum weight (Rains and Sloane)

$$d_{I} \leq \begin{cases} 2\lfloor n/6 \rfloor + 1, & n \equiv 0 \pmod{6}; \\ 2\lfloor n/6 \rfloor + 3, & n \equiv 5 \pmod{6}; \\ 2\lfloor n/6 \rfloor + 2, & \text{otherwise} \end{cases}$$
(2)
$$d_{II} \leq 2\lfloor n/6 \rfloor + 2$$

A code that meets the appropriate bound is called *extremal*.

If the code is not extremal but no code of given type can exist with a larger minimum weight, the code is called *optimal*.

EQUIVALENCE

<u>Equivalent</u> additive codes - C_1 and C_2 are equivalent if there is a map sending the codewords of C_1 onto the codewords of C_2 where the map consists of a permutation of coordinates, a scaling of coordinates by element of \mathbb{F}_4 , and conjugation of some of coordinates.

Aut(C) - automorphism group of C, consists of all maps which permute coordinates, scale coordinates, and conjugate coordinates that send codewords of C to codewords of C.

Equivalence of two additive codes over \mathbb{F}_4 – by operations on binary codes. The transformation from C into a binary code is done by applying the map

 $\beta: 0 \to 000; 1 \to 011; \omega \to 101; \overline{\omega} \to 110 \mid (n, 2^k) \to [3n, k]_2$ code

SHADOW OF A BINARY SELF-DUAL CODE

The shadow of a binary self-dual code was introduced by Conway and Sloane (1990).

The purpose: to get additional constraints in the weight enumerator of a singly-even self-dual code.

$$S = S(C) = \{ w \in \mathbb{F}_2^n | (v, w) \equiv \frac{1}{2}wt(v) \pmod{2} \text{ for all } v \in C \},\$$

- d minimum weight in C; s minimum weight in S.
- \Rightarrow s-extremal codes (Bachoc and Gaborit, 2004)

$$2d + s \le n/2 + 4, n \ne 22 \pmod{24}$$

2d + s = n/2 + 8, $n \equiv 22 \pmod{24}$ and d = 4[n/24] + 6

SHADOW OF A \mathbb{F}_4 -ADDITIVE SELF-DUAL CODE

Is there a concept of *s*-extremal \mathbb{F}_4 -additive codes?

If so, can we classify them?

Shadow S = S(C) of C is

 $S = \{ w \in \mathbb{F}_4^n | v \star w \equiv wt(v) \pmod{2} \text{ for all } v \in C \}.$

If C is Type II, then S(C) = C.

If C is Type I, then S(C) is a coset of C.

S-EXTREMAL ADDITIVE CODES

Theorem (Gaborit et. all, 2007) Let C be a Type $I \mathbb{F}_4$ additive code, let $d = d_{min}(C)$ be the minimum distance of C, let S = S(C) be the shadow of C, and let $s = wt_{min}(S)$ be the minimum weight of S. Then $2d + s \le n + 2$ unless n = 6m + 5and d = 2m + 3, in which case 2d + s = n + 4.

s-extremal code - a code C with 2d+s = n+2 (2d+s = n+4, resp.)

Bounds on the length (S.Han, J.-L.Kim, 2008):

$$3d - 4 \le n \le 3d - 2$$
 (d is even)
 $d = 5$: $11 \le n \le 15$
 $d = 9$: $23 \le n \le 27$
 $d = 11$: $17 \le n \le 21$
 $d = 11$: $29 \le n \le 33$

PRELIMINARY RESULTS

 \rightarrow Gaborit, Bautista, Kim, and Walker, 2007 – bounds on the length of *s*-extremal codes with even distance *d*, classification of codes up to d = 4.

- If C is extremal Type II code of length $n \equiv 0$ or 2 (mod 6), then any shortening of C is s-extremal code.

- All *s*-extremal additive codes of given length have a unique weight enumerator.

 \rightarrow S.Han and J.-L. Kim, 2008 – improvements of a bounds

<u>**PROBLEM</u>:** To construct/classify *s*-extremal additive codes with $d \ge 5$.</u>

SHORTENING

Gaborit, Huffman, Kim, and Pless -2001

C - additive self-dual $(n, 2^n, d)$ code \rightarrow additive self-dual code of length n - 1 by a process called *shortening*.

The shortened code of C on coordinate i (with only 1 or 2 nonzero entries) – the code C' with generator matrix G' obtained from G by eliminating one row of G with a nonzero entry in column i and then eliminating column i.

C' is an additive self-dual $(n-1, 2^{n-1}, d')$ code with $d' \ge d-1$.

Example:

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ \omega & \omega & \omega \end{pmatrix} \rightarrow G' = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & 1 \\ \omega & \omega \end{pmatrix}$$

GRAPH CODES

Graph code – additive self-dual code over \mathbb{F}_4 with generator matrix $\Gamma + \omega I$, where I is the identity matrix and Γ is the adjacency matrix of a simple undirected graph which must be symmetric with 0's along the diagonal.

EXAMPLE:

$$\Gamma = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad C = \Gamma + \omega I = \begin{pmatrix} \omega & 1 & 1 \\ 1 & \omega & 1 \\ 1 & 1 & \omega \end{pmatrix}$$

<u>Theorem</u> (Schlingemann and Werner, 2002): For any selfdual additive code, there is an equivalent graph code. This means that there is a one-to-one correspondence between the set of simple undirected graphs and the set of self-dual additive codes over \mathbb{F}_4 .

LENGTHENING OF GRAPH CODES

<u>Lemma:</u> (ZV,2007) If G is a generator matrix of a graph code of length n, and x is a binary vector, then

$$G' = \left(\frac{G \mid x^t}{x \mid \omega}\right)$$

is a generator matrix of a graph code of length n + 1.

The special form of the generator matrix of a graph code makes it easier to find the distance of the code. If the generator matrix is given in graph form, it is not necessary to check all 2^n codewords to find the distance of the code.

RESULTS FOR CODES WITH d = 5

In this case $11 \le n \le 15$. The codes of lenghts 11 and 12 were classified (Gaborit et. all, 2007)

LENGTH 13:

- there are exactly 85845 nonequivalent codes with n = 13and d = 5 (ZV,2007).

- weight enumerator: $C(z) = 1 + 39z^5 + 156z^6 + ... + 183z^{13}$
 - \Rightarrow there are 33428 *s*-extremal codes of length 13.

Number of *s*-extremal codes with $|Aut(C)| = \alpha$

α	1	2	3	4	6	8	12	52	156
Number	32134	1228	5	49	7	1	2	1	1

RESULTS FOR CODES WITH d = 5

LENGTH 14:

- weight enumerator: $C(z) = 1 + 42z^5 + 119z^6 + \ldots + 267z^{14}$
- one code was known (Gaborit et. all, 2007).

By lengthening of graph codes we construct 1075 new codes.

Number of *s*-extremal codes with $|Aut(C)| = \alpha$

α	1	2	3	4	6	8	24	28
Number	≥ 915	≥ 125	≥ 8	≥ 16	≥ 5	≥ 5	≥ 1	≥ 1

LENGTH 15:

No known codes with d = 5 and n = 15, putative weight enumerator $C(z) = 1 + 63z^5 + 105z^6 + \ldots + 381z^{15}$

RESULTS FOR CODES WITH d = 6

LENGTH 14:

- there exist exactly 2 Type I codes with n = 14 and d = 6. (ZV,2007)
- weight enumerator: $C(z) = 1 + 161z^6 + 576z^7 + ... + 543z^{14}$
- \Rightarrow a unique *s*-extremal code with these parameters.

LENGTH 15:

- No known examples until now
- weight enumerator: $C(z) = 1 + 105z^6 + 540z^7 + \ldots + 825z^{14}$
- \Rightarrow By lengthening of graph codes we construct 4 new codes.

LENGTH 16:

No known codes with d = 6 and n = 16, putative weight enumerator $C(z) = 1 + 56z^6 + 480z^7 + \ldots + 645z^{16}$

<u>RESULTS FOR CODES WITH d = 7</u>

LENGTH 17:

- One code is known (Gulliver and Kim, 2004).
- weight enumerator: $C(z) = 1 + 408z^7 + 1530z^8 + \ldots + 936z^{17}$

LENGTH 18: No known examples, putative weight enumerator: $C(z) = 1 + 288z^7 + 1314z^8 + \ldots + 1432z^{18}$

LENGTH 19:

- Four codes were known (Gulliver and Kim, 2004).
- weight enumerator: $C(z) = 1 + 228z^7 + 1026z^8 + \ldots + 2148z^{19}$

 \Rightarrow By shortening of codes of length 20 we construct 14 new $\mathit{s}\text{-extremal}$ codes.

SUMMARY OF RESULTS

Number of nonequivalent *s*-extremal codes for $5 \le d \le 8$

d	n	number	d	n	number
	11	1 [1]		17	≥ 2
	12	59 [1]		18	?
5	13	33428	7	19	≥ 8
	14	≥ 1076		20	?
	15	?		21	?
	14	1		20	≥ 2 [2]
6	15	≥ 4	8	21	≥ 1 [2]
	16	?		22	?

[1] – Gaborit et. all, 2007 [2] – Gulliver and Kim, 2004

THANKS FOR YOUR ATTENTION!