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ADDITIVE CODES OVER Fq

Additive code C over Fq of length n – additive subgroup
of Fn

q .

Connections:

⇒ Quantum codes (Calderbank, Rains, Shor, and Sloane)

⇒ combinatorial t-designs (Pless and Kim)

⇒ undirected graphs (Glynn; Schlingemann and Werner)

⇒ other combinatorial structures (Huffman, Gulliver,
Parker)
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ADDITIVE CODES OVER F4

F4 = GF (4) = {0, 1, ω, ω2}, 2 = ω, 3 = ω2, and ω2 + ω + 1 = 0.

Additive code C over F4 of length n – additive subgroup of Fn
4 .

We call C an (n, 2k) code (0 ≤ k ≤ 2n).

Weight of a codeword c ∈ C (wt(c)) is the number of nonzero
components of c.

d = d(C) = min{wt(c)|c ∈ C, c 6= 0} → (n, 2k, d) code.

Generator matrix of C – k × n matrix with entries in F4

whose rows are a basis of C.

Weight enumerator of C: C(z) =
∑n

i=0 Aiz
i
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ADDITIVE CODES OVER F4

Trace map Tr : F4 → F2 is given by Tr(x) = x + x2.
In particular Tr(0) = Tr(1) = 0 and Tr(ω) = Tr(ω2) = 1.

The conjugate of x ∈ F4 (denoted x̄) is the following image
of x: 0̄ = 0, 1̄ = 1, and ω̄ = ω2.

The trace inner product of two vectors
x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) in Fn

4 is

x ? y =
n∑

i=1

Tr(xiȳi) (1)
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ADDITIVE SELF-ORTHOGONAL CODES

Dual code (C⊥) – C⊥ = {x ∈ Fn
4 |x ? c = 0 for all c ∈ C}.

If C is an (n, 2k) code, then C⊥ is an (n, 22n−k) code.

Self-orthogonal additive code - C ⊆ C⊥

Self-dual additive code - C = C⊥; it is (n, 2n) code.

Type II code - additive self-dual code, all codewords have
even weight

Type I code - additive self-dual code, some codewords have
odd weight
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BOUNDS

Bounds on the minimum weight (Rains and Sloane)

dI ≤




2bn/6c+ 1, n ≡ 0 (mod 6);
2bn/6c+ 3, n ≡ 5 (mod 6);
2bn/6c+ 2, otherwise

(2)

dII ≤ 2bn/6c+ 2

A code that meets the appropriate bound is called extremal.

If the code is not extremal but no code of given type can
exist with a larger minimum weight, the code is called optimal.
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EQUIVALENCE

Equivalent additive codes - C1 and C2 are equivalent if there
is a map sending the codewords of C1 onto the codewords of
C2 where the map consists of a permutation of coordinates,
a scaling of coordinates by element of F4, and conjugation of
some of coordinates.

Aut(C) - automorphism group of C, consists of all maps
which permute coordinates, scale coordinates, and conjugate
coordinates that send codewords of C to codewords of C.

Equivalence of two additive codes over F4 – by operations
on binary codes. The transformation from C into a binary
code is done by applying the map

β : 0 → 000; 1 → 011; ω → 101; ω̄ → 110 | (n, 2k) → [3n, k]2 code
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SHADOW OF A BINARY SELF-DUAL CODE

The shadow of a binary self-dual code was introduced by
Conway and Sloane (1990).

The purpose: to get additional constraints in the weight
enumerator of a singly-even self-dual code.

S = S(C) = {w ∈ Fn
2 |(v, w) ≡ 1

2
wt(v) (mod 2) for all v ∈ C},

d – minimum weight in C; s – minimum weight in S.

⇒ s-extremal codes (Bachoc and Gaborit, 2004)

2d + s ≤ n/2 + 4, n 6= 22 (mod 24)

2d + s = n/2 + 8, n ≡ 22 (mod 24) and d = 4[n/24] + 6
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SHADOW OF A F4–ADDITIVE SELF-DUAL CODE

Is there a concept of s-extremal F4-additive codes?

If so, can we classify them?

Shadow S = S(C) of C is

S = {w ∈ Fn
4 |v ? w ≡ wt(v) (mod 2) for all v ∈ C}.

If C is Type II, then S(C) = C.

If C is Type I, then S(C) is a coset of C.
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S-EXTREMAL ADDITIVE CODES

Theorem (Gaborit et. all, 2007) Let C be a Type I F4-
additive code, let d = dmin(C) be the minimum distance of C,
let S = S(C) be the shadow of C, and let s = wtmin(S) be the
minimum weight of S. Then 2d + s ≤ n + 2 unless n = 6m + 5
and d = 2m + 3, in which case 2d + s = n + 4.

s-extremal code - a code C with 2d+ s = n+2 (2d+ s = n+4,
resp.)

Bounds on the length (S.Han, J.-L.Kim, 2008):

3d− 4 ≤ n ≤ 3d− 2 (d is even)

d = 5 : 11 ≤ n ≤ 15 d = 7 : 17 ≤ n ≤ 21
d = 9 : 23 ≤ n ≤ 27 d = 11 : 29 ≤ n ≤ 33
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PRELIMINARY RESULTS

→ Gaborit, Bautista, Kim, and Walker, 2007 – bounds
on the length of s-extremal codes with even distance d,
classification of codes up to d = 4.

– If C is extremal Type II code of length n ≡ 0 or 2 (mod
6), then any shortening of C is s-extremal code.

– All s-extremal additive codes of given length have a
unique weight enumerator.

→ S.Han and J.-L. Kim, 2008 – improvements of a bounds

PROBLEM: To construct/classify s-extremal additive
codes with d ≥ 5.
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SHORTENING

Gaborit, Huffman, Kim, and Pless – 2001

C – additive self-dual (n, 2n, d) code → additive self-dual
code of length n− 1 by a process called shortening.

The shortened code of C on coordinate i (with only 1 or
2 nonzero entries) – the code C ′ with generator matrix G′

obtained from G by eliminating one row of G with a nonzero
entry in column i and then eliminating column i.

C ′ is an additive self-dual (n−1, 2n−1, d′) code with d′ ≥ d−1.

Example:

G =




1 0 1
0 1 1
ω ω ω


 → G′ =

(
0 1
1 1

)
or

(
1 1
ω ω

)
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GRAPH CODES

Graph code – additive self-dual code over F4 with generator
matrix Γ + ωI, where I is the identity matrix and Γ is the
adjacency matrix of a simple undirected graph which must
be symmetric with 0’s along the diagonal.

EXAMPLE:

Γ =




0 1 1
1 0 1
1 1 0


 , C = Γ + ωI =




ω 1 1
1 ω 1
1 1 ω




Theorem (Schlingemann and Werner, 2002): For any self-
dual additive code, there is an equivalent graph code. This means that
there is a one-to-one correspondence between the set of simple undi-
rected graphs and the set of self-dual additive codes over F4.
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LENGTHENING OF GRAPH CODES

Lemma: (ZV,2007) If G is a generator matrix of a graph code of
length n, and x is a binary vector, then

G′ =
(

G xt

x ω

)

is a generator matrix of a graph code of length n + 1.

The special form of the generator matrix of a graph code
makes it easier to find the distance of the code. If the gen-
erator matrix is given in graph form, it is not necessary to
check all 2n codewords to find the distance of the code.
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RESULTS FOR CODES WITH d = 5

In this case 11 ≤ n ≤ 15. The codes of lenghts 11 and 12
were classified (Gaborit et. all, 2007)

LENGTH 13:

– there are exactly 85845 nonequivalent codes with n = 13
and d = 5 (ZV,2007).

– weight enumerator: C(z) = 1 + 39z5 + 156z6 + ... + 183z13

⇒ there are 33428 s-extremal codes of length 13.

Number of s-extremal codes with |Aut(C)| = α

α 1 2 3 4 6 8 12 52 156
Number 32134 1228 5 49 7 1 2 1 1
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RESULTS FOR CODES WITH d = 5

LENGTH 14:

– weight enumerator: C(z) = 1 + 42z5 + 119z6 + . . . + 267z14

– one code was known (Gaborit et. all, 2007).

By lengthening of graph codes we construct 1075 new codes.

Number of s-extremal codes with |Aut(C)| = α

α 1 2 3 4 6 8 24 28
Number ≥ 915 ≥ 125 ≥ 8 ≥ 16 ≥ 5 ≥ 5 ≥ 1 ≥ 1

LENGTH 15:
No known codes with d = 5 and n = 15, putative weight

enumerator C(z) = 1 + 63z5 + 105z6 + . . . + 381z15
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RESULTS FOR CODES WITH d = 6

LENGTH 14:

– there exist exactly 2 Type I codes with n = 14 and d = 6.
(ZV,2007)

– weight enumerator: C(z) = 1 + 161z6 + 576z7 + ... + 543z14

⇒ a unique s-extremal code with these parameters.

LENGTH 15:

– No known examples until now

– weight enumerator: C(z) = 1 + 105z6 + 540z7 + . . . + 825z14

⇒ By lengthening of graph codes we construct 4 new codes.

LENGTH 16:
No known codes with d = 6 and n = 16, putative weight

enumerator C(z) = 1 + 56z6 + 480z7 + . . . + 645z16
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RESULTS FOR CODES WITH d = 7

LENGTH 17:

– One code is known (Gulliver and Kim, 2004).

– weight enumerator: C(z) = 1 + 408z7 + 1530z8 + . . . + 936z17

LENGTH 18: No known examples, putative weight enu-
merator: C(z) = 1 + 288z7 + 1314z8 + . . . + 1432z18

LENGTH 19:

– Four codes were known (Gulliver and Kim, 2004).

– weight enumerator: C(z) = 1 + 228z7 + 1026z8 + . . . + 2148z19

⇒ By shortening of codes of length 20 we construct 14 new
s-extremal codes.
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SUMMARY OF RESULTS

Number of nonequivalent s-extremal codes for 5 ≤ d ≤ 8

d n number d n number
11 1 [1] 17 ≥ 2
12 59 [1] 18 ?

5 13 33428 7 19 ≥ 8
14 ≥ 1076 20 ?
15 ? 21 ?
14 1 20 ≥ 2 [2]

6 15 ≥ 4 8 21 ≥ 1 [2]
16 ? 22 ?

[1] – Gaborit et. all, 2007 [2] – Gulliver and Kim, 2004
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