NEW RESULTS ON S-EXTREMAL ADDITIVE CODES OVER \mathbb{F}_{4}

Zlatko Varbanov

Department of Mathematics and Informatics Veliko Tarnovo University

Algebraic and Combinatorial Coding Theory
Pamporovo, June 2008

ADDITIVE CODES OVER \mathbb{F}_{q}

Additive code C over \mathbb{F}_{q} of length n - additive subgroup of \mathbb{F}_{q}^{n}.

Connections:
\Rightarrow Quantum codes (Calderbank, Rains, Shor, and Sloane)
\Rightarrow combinatorial t-designs (Pless and Kim)
\Rightarrow undirected graphs (Glynn; Schlingemann and Werner)
\Rightarrow other combinatorial structures (Huffman, Gulliver, Parker)

ADDITIVE CODES OVER \mathbb{F}_{4}

$$
\mathbb{F}_{4}=G F(4)=\left\{0,1, \omega, \omega^{2}\right\}, 2=\omega, 3=\omega^{2}, \text { and } \omega^{2}+\omega+1=0
$$

Additive code C over \mathbb{F}_{4} of length n - additive subgroup of \mathbb{F}_{4}^{n}. We call C an $\left(n, 2^{k}\right)$ code $(0 \leq k \leq 2 n)$.

Weight of a codeword $c \in C(w t(c))$ is the number of nonzero components of c.

$$
d=d(C)=\min \{w t(c) \mid c \in C, c \neq 0\} \rightarrow\left(n, 2^{k}, d\right) \text { code. }
$$

Generator matrix of $C-k \times n$ matrix with entries in \mathbb{F}_{4} whose rows are a basis of C.

Weight enumerator of $C: C(z)=\sum_{i=0}^{n} A_{i} z^{i}$

ADDITIVE CODES OVER \mathbb{F}_{4}

Trace map $\operatorname{Tr}: \mathbb{F}_{4} \rightarrow \mathbb{F}_{2}$ is given by $\operatorname{Tr}(x)=x+x^{2}$.
In particular $\operatorname{Tr}(0)=\operatorname{Tr}(1)=0$ and $\operatorname{Tr}(\omega)=\operatorname{Tr}\left(\omega^{2}\right)=1$.
The conjugate of $x \in \mathbb{F}_{4}$ (denoted \bar{x}) is the following image of $x: \overline{0}=0, \overline{1}=1$, and $\bar{\omega}=\omega^{2}$.

The trace inner product of two vectors
$x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ in \mathbb{F}_{4}^{n} is

$$
\begin{equation*}
x \star y=\sum_{i=1}^{n} \operatorname{Tr}\left(x_{i} \bar{y}_{i}\right) \tag{1}
\end{equation*}
$$

ADDITIVE SELF-ORTHOGONAL CODES

Dual code $\left(C^{\perp}\right)-C^{\perp}=\left\{x \in \mathbb{F}_{4}^{n} \mid x \star c=0\right.$ for all $\left.c \in C\right\}$.
If C is an $\left(n, 2^{k}\right)$ code, then C^{\perp} is an $\left(n, 2^{2 n-k}\right)$ code.
Self-orthogonal additive code - $C \subseteq C^{\perp}$
Self-dual additive code - $C=C^{\perp}$; it is $\left(n, 2^{n}\right)$ code.
Type II code - additive self-dual code, all codewords have even weight

Type I code - additive self-dual code, some codewords have odd weight

BOUNDS

$\underline{\text { Bounds on the minimum weight (Rains and Sloane) }}$

$$
\begin{align*}
& d_{I} \leq \begin{cases}2\lfloor n / 6\rfloor+1, & n \equiv 0(\bmod 6) ; \\
2\lfloor n / 6\rfloor+3, & n \equiv 5(\bmod 6) ; \\
2\lfloor n / 6\rfloor+2, & \text { otherwise }\end{cases} \tag{2}\\
& d_{I I} \leq 2\lfloor n / 6\rfloor+2
\end{align*}
$$

A code that meets the appropriate bound is called extremal.
If the code is not extremal but no code of given type can exist with a larger minimum weight, the code is called optimal.

EQUIVALENCE

Equivalent additive codes - C_{1} and C_{2} are equivalent if there is a map sending the codewords of C_{1} onto the codewords of C_{2} where the map consists of a permutation of coordinates, a scaling of coordinates by element of \mathbb{F}_{4}, and conjugation of some of coordinates.
$A u t(C)$ - automorphism group of C, consists of all maps which permute coordinates, scale coordinates, and conjugate coordinates that send codewords of C to codewords of C.

Equivalence of two additive codes over \mathbb{F}_{4} - by operations on binary codes. The transformation from C into a binary code is done by applying the map
$\beta: 0 \rightarrow 000 ; 1 \rightarrow 011 ; \omega \rightarrow 101 ; \bar{\omega} \rightarrow 110 \mid\left(n, 2^{k}\right) \rightarrow[3 n, k]_{2}$ code

SHADOW OF A BINARY SELF-DUAL CODE

The shadow of a binary self-dual code was introduced by Conway and Sloane (1990).

The purpose: to get additional constraints in the weight enumerator of a singly-even self-dual code.

$$
\begin{aligned}
& S=S(C)=\left\{w \in \mathbb{F}_{2}^{n} \left\lvert\,(v, w) \equiv \frac{1}{2} w t(v)(\bmod 2)\right. \text { for all } v \in C\right\}, \\
& d \text { - minimum weight in } C ; s \text { - minimum weight in } S . \\
& \Rightarrow s \text {-extremal codes }(\text { Bachoc and Gaborit, 2004) } \\
& 2 d+s \leq n / 2+4, n \neq 22(\bmod 24) \\
& 2 d+s=n / 2+8, n \equiv 22(\bmod 24) \text { and } d=4[n / 24]+6
\end{aligned}
$$

SHADOW OF A \mathbb{F}_{4}-ADDITIVE SELF-DUAL CODE

Is there a concept of s-extremal \mathbb{F}_{4}-additive codes?
If so, can we classify them?
Shadow $S=S(C)$ of C is

$$
S=\left\{w \in \mathbb{F}_{4}^{n} \mid v \star w \equiv w t(v)(\bmod 2) \text { for all } v \in C\right\} .
$$

If C is Type $I I$, then $S(C)=C$.
If C is Type I, then $S(C)$ is a coset of C.

S-EXTREMAL ADDITIVE CODES

Theorem (Gaborit et. all, 2007) Let C be a Type $I \mathbb{F}_{4^{-}}$ additive code, let $d=d_{\min }(C)$ be the minimum distance of C, let $S=S(C)$ be the shadow of C, and let $s=w t_{\text {min }}(S)$ be the minimum weight of S. Then $2 d+s \leq n+2$ unless $n=6 m+5$ and $d=2 m+3$, in which case $2 d+s=n+4$.
s-extremal code - a code C with $2 d+s=n+2(2 d+s=n+4$, resp.)

Bounds on the length (S.Han, J.-L.Kim, 2008):

$$
\begin{aligned}
& 3 d-4 \leq n \leq 3 d-2(d \text { is even }) \\
& d=5: \quad 11 \leq n \leq 15 \quad d=7: \quad 17 \leq n \leq 21 \\
& d=9: 23 \leq n \leq 27 \quad d=11: 29 \leq n \leq 33
\end{aligned}
$$

PRELIMINARY RESULTS

\rightarrow Gaborit, Bautista, Kim, and Walker, 2007 - bounds on the length of s-extremal codes with even distance d, classification of codes up to $d=4$.

- If C is extremal Type $I I$ code of length $n \equiv 0$ or $2(\bmod$ 6), then any shortening of C is s-extremal code.
- All s-extremal additive codes of given length have a unique weight enumerator.
\rightarrow S.Han and J.-L. Kim, 2008 - improvements of a bounds

PROBLEM: To construct/classify s-extremal additive codes with $d \geq 5$.

SHORTENING

Gaborit, Huffman, Kim, and Pless - 2001
C - additive self-dual $\left(n, 2^{n}, d\right)$ code \rightarrow additive self-dual code of length $n-1$ by a process called shortening.

The shortened code of C on coordinate \mathbf{i} (with only 1 or 2 nonzero entries) - the code C^{\prime} with generator matrix G^{\prime} obtained from G by eliminating one row of G with a nonzero entry in column i and then eliminating column i.
C^{\prime} is an additive self-dual $\left(n-1,2^{n-1}, d^{\prime}\right)$ code with $d^{\prime} \geq d-1$.
Example:
$G=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & 1 & 1 \\ \omega & \omega & \omega\end{array}\right) \rightarrow G^{\prime}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$ or $\left(\begin{array}{cc}1 & 1 \\ \omega & \omega\end{array}\right)$

GRAPH CODES

Graph code - additive self-dual code over \mathbb{F}_{4} with generator matrix $\Gamma+\omega I$, where I is the identity matrix and Γ is the adjacency matrix of a simple undirected graph which must be symmetric with 0's along the diagonal.

EXAMPLE:

$$
\Gamma=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \quad C=\Gamma+\omega I=\left(\begin{array}{ccc}
\omega & 1 & 1 \\
1 & \omega & 1 \\
1 & 1 & \omega
\end{array}\right)
$$

Theorem (Schlingemann and Werner, 2002): For any selfdual additive code, there is an equivalent graph code. This means that there is a one-to-one correspondence between the set of simple undirected graphs and the set of self-dual additive codes over \mathbb{F}_{4}.

LENGTHENING OF GRAPH CODES

Lemma: (ZV,2007) If G is a generator matrix of a graph code of length n, and x is a binary vector, then

$$
G^{\prime}=\left(\begin{array}{c|c}
G & x^{t} \\
\hline x & \omega
\end{array}\right)
$$

is a generator matrix of a graph code of length $n+1$.
The special form of the generator matrix of a graph code makes it easier to find the distance of the code. If the generator matrix is given in graph form, it is not necessary to check all 2^{n} codewords to find the distance of the code.

RESULTS FOR CODES WITH $d=5$

In this case $11 \leq n \leq 15$. The codes of lenghts 11 and 12 were classified (Gaborit et. all, 2007)

LENGTH 13:

- there are exactly 85845 nonequivalent codes with $n=13$ and $d=5$ (ZV,2007).
- weight enumerator: $C(z)=1+39 z^{5}+156 z^{6}+\ldots+183 z^{13}$
\Rightarrow there are 33428 s -extremal codes of length 13.

Number of s-extremal codes with $|A u t(C)|=\alpha$

α	1	2	3	4	6	8	12	52	156
Number	$\mathbf{3 2 1 3 4}$	$\mathbf{1 2 2 8}$	$\mathbf{5}$	$\mathbf{4 9}$	$\mathbf{7}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$

RESULTS FOR CODES WITH $d=5$

LENGTH 14:

- weight enumerator: $C(z)=1+42 z^{5}+119 z^{6}+\ldots+267 z^{14}$
- one code was known (Gaborit et. all, 2007).

By lengthening of graph codes we construct 1075 new codes.
Number of s-extremal codes with $|\operatorname{Aut}(C)|=\alpha$

α	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{2 4}$	$\mathbf{2 8}$
Number	≥ 915	≥ 125	≥ 8	≥ 16	≥ 5	≥ 5	≥ 1	≥ 1

LENGTH 15:
No known codes with $d=5$ and $n=15$, putative weight enumerator $C(z)=1+63 z^{5}+105 z^{6}+\ldots+381 z^{15}$

RESULTS FOR CODES WITH $d=6$

LENGTH 14:

- there exist exactly 2 Type I codes with $n=14$ and $d=6$. (ZV,2007)
- weight enumerator: $C(z)=1+161 z^{6}+576 z^{7}+\ldots+543 z^{14}$
\Rightarrow a unique s-extremal code with these parameters.

LENGTH 15:

- No known examples until now
- weight enumerator: $C(z)=1+105 z^{6}+540 z^{7}+\ldots+825 z^{14}$
\Rightarrow By lengthening of graph codes we construct 4 new codes.
LENGTH 16:
No known codes with $d=6$ and $n=16$, putative weight enumerator $C(z)=1+56 z^{6}+480 z^{7}+\ldots+645 z^{16}$

RESULTS FOR CODES WITH $d=7$

LENGTH 17:

- One code is known (Gulliver and Kim, 2004).
- weight enumerator: $C(z)=1+408 z^{7}+1530 z^{8}+\ldots+936 z^{17}$

LENGTH 18: No known examples, putative weight enumerator: $C(z)=1+288 z^{7}+1314 z^{8}+\ldots+1432 z^{18}$

LENGTH 19:

- Four codes were known (Gulliver and Kim, 2004).
- weight enumerator: $C(z)=1+228 z^{7}+1026 z^{8}+\ldots+2148 z^{19}$
\Rightarrow By shortening of codes of length 20 we construct 14 new s-extremal codes.

SUMMARY OF RESULTS

Number of nonequivalent s-extremal codes for $5 \leq d \leq 8$

d	n	number	d	n	number
	11	$1[1]$		17	≥ 2
	12	$59[1]$		18	$?$
5	13	33428	7	19	≥ 8
	14	≥ 1076		20	$?$
	15	$?$		21	$?$
	14	1		20	$\geq 2[2]$
6	15	≥ 4	8	21	$\geq 1[2]$
	16	$?$		22	$?$

[1] - Gaborit et. all, 2007
[2] - Gulliver and Kim, 2004

THANKS FOR YOUR ATTENTION!

